Publications

Publications

Publications

2019

[32] Artzet S, Chen T-W, Chopard J, Brichet N, Mielewczik M, Cohen-Boulakia S, Cabrera-Bosquet L, Tardieu F, Fournier C, Pradal C. 2019. <em>Phenomenal</em>: An automatic open source library for 3D shoot architecture reconstruction and analysis for image-based plant phenotyping. bioRxiv, 805739. https://doi.org/10.1101/805739

[31] Blein-Nicolas M, Negro SS, Balliau T, Welcker C, Bosquet LC, Nicolas SD, Charcosset A, Zivy M. 2019. A proteomics-based systems genetics approach reveals environment-specific loci modulating protein co-expression and drought-related traits in maize. bioRxiv, 636514. https://doi.org/10.1101/636514

[30] Millet EJ, Kruijer W, Coupel-Ledru A, Alvarez Prado S, Cabrera-Bosquet L, Lacube S, Charcosset A, Welcker C, van Eeuwijk F, Tardieu F. 2019. Genomic prediction of maize yield across European environmental conditions. Nature Genetics 51, 952-956. https://doi.org/10.1038/s41588-019-0414-y

[29] Alvarez Prado S, Sanchez I, Cabrera-Bosquet L, Grau A, Welcker C, Tardieu F, Hilgert N. 2019. Cleaning or not cleaning phenotypic datasets for outlier plants in genetic analyses? Journal of Experimental Botany. https://doi.org/10.1093/jxb/erz191

[28] Perez RPA, Fournier C, Cabrera-Bosquet L, Artzet S, Pradal C, Brichet N, Chen TW, Chapuis R, Welcker C, Tardieu F. 2019. Changes in the vertical distribution of leaf area enhanced light interception efficiency in maize over generations of selection. Plant, Cell & Environment. https://doi.org/10.1111/pce.13539

[27]  T. Roitsch, L. Cabrera-Bosquet, A. Fournier, K. Ghamkhar, J. Jiménez-Berni, F. Pinto, E.S. Ober. 2019. Review: New sensors and data-driven approaches—A path to next generation phenomics. Plant Science. https://doi.org/10.1016/j.plantsci.2019.01.011

[26] Molero G, Tcherkez G, Roca R, Mauve C, Cabrera-Bosquet L, Araus JL, Nogués S, Aranjuelo I. 2019. Do metabolic changes underpin physiological responses to water limitation in alfalfa (Medicago sativa) plants during a regrowth period? Agricultural Water Management 212: 1-11. https://doi.org/10.1016/j.agwat.2018.08.021

[25] Neveu, P., A. Tireau, N. Hilgert, V. Nègre, J. Mineau-Cesari, N. Brichet, R. Chapuis, I. Sanchez, C. Pommier, B. Charnomordic, F. Tardieu and L. Cabrera-Bosquet. 2019. Dealing with multi-source and multi-scale information in plant phenomics: the ontology-driven Phenotyping Hybrid Information System. New Phytologist 221: 588-601. https://doi.org/10.1111/nph.15385

2018

[24] Alvarez Prado S, Cabrera-Bosquet L, Grau A, Coupel-Ledru A, Millet EJ, Welcker C & Tardieu F. 2018. Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand. Plant, Cell & Environment 41: 314-326. http://dx.doi.org/10.1111/pce.13083/full

[23] Chen T-W, Cabrera-Bosquet L, Alvarez Prado S, Perez R, Artzet S, Pradal C, Coupel-Ledru A, Fournier C, Tardieu F. 2018. Genetic and environmental dissection of biomass accumulation in multi-genotype maize canopies. Journal of Experimental Botany: https://doi.org/10.1093/jxb/ery309

2017

[22] Brichet N, Fournier C, Turc O, Strauss O, Artzet S, Pradal C, Welcker C, Tardieu F, Cabrera-Bosquet L. 2017. A robot-assisted imaging pipeline for tracking the growths of maize ear and silks in a high-throughput phenotyping platform. Plant Methods 13:96 doi:10.1186/s13007-017-0246-7

Additional-file-3_medium

[21] Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. Plant Phenomics, From Sensors to Knowledge. 2017. Current Biology 27: R770-R783. http://dx.doi.org/10.1016/j.cub.2017.05.055

[20] Cabrera-Bosquet L, Grieder C, Alvarez Prado S, Sanchez C, Araus JL. 2017. Kernel δ18O reflects changes in apical dominance and plant transpiration in tropical maize. Journal of Agronomy and Crop Science: in press. http://dx.doi/10.1111/jac.12196/full

2016

[19] Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard B, Tardieu F. 2016. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytologist 212:269-81. http://dx.doi.org/10.1111/nph.14027

Methods_medium

[18] Jeudy C, Adrian M, Baussard C, Bernard C, Bernaud E, et al. 2016. RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation. Plant Methods 12:1-18. http://dx.doi.org/10.1186/s13007-016-0131-9

roots_medium

2015

[17] Araus J, Elazab A, Vergara O, Cabrera-Bosquet L, Serret MD, Zaman-Allah M, Cairns JE. 2015. New Technologies for Phenotyping. In: Fritsche-Neto, Roberto, Borém, Aluízio, Phenomics. How next-generation phenotyping is revolutionizing plant breeding (p. 1-14). Springer International Publishing. DOI : 10.1007/978-3-319-13677-6_1

arausnewtech_medium

2014

[16] Coupel-Ledru A, Lebon É, Christophe A, Doligez A, Cabrera-Bosquet L, et al. 2014. Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache×Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. Journal of Experimental Botany 65:6205-18. http://dx.doi.org/10.1093/jxb/eru228

qtlvigne_large

2013

[15] Aranjuelo I, Cabrera-Bosquet L, Araus JL, Nogues S. 2013. Carbon and nitrogen partitioning during the post-anthesis period is conditioned by N fertilisation and sink strength in three cereals. Plant Biology 15:135-43 http://10.1111/j.1438-8677.2012.00593.x

[14] Araus JL, Cabrera-Bosquet L, Dolores Serret M, Bort J, Teresa Nieto-Taladriz M. 2013. Comparative performance of δ13C, δ18O and δ15N for phenotyping durum wheat adaptation to a dryland environment. Functional Plant Biology 40:595-608. http://dx.doi.org/10.1071/fp12254

[13] Lopes MS, Iglesia-Turino S, Cabrera-Bosquet L, Serret MD, Bort J, et al. 2013. Molecular and physiological mechanisms associated with root exposure to mercury in barley. Metallomics 5:1305-15. http://dx.doi.org/10.1039/c3mt00084b

lopes_medium

2012

[12] Cabrera-Bosquet L, Crossa J, von Zitzewitz J, Serret MD, Araus JL. 2012. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge. Journal of Integrative Plant Biology 54:312-20. http://dx.doi.org/10.1111/j.1744-7909.2012.01116.x

HTPP_medium

2011

[11] Cabrera-Bosquet L, Albrizio R, Nogues S, Araus JL. 2011. Dual Δ13C/δ18O response to water and nitrogen availability and its relationship with yield in field-grown durum wheat. Plant Cell and Environment 34:418-33. http://dx.doi.org/10.1111/j.1365-3040.2010.02252.x

bari2_medium

[10] Cabrera-Bosquet L, Sanchez C, Rosales A, Palacios-Rojas N, Luis Araus J. 2011. Near-Infrared Reflectance Spectroscopy (NIRS) Assessment of Δ18O and Nitrogen and Ash Contents for Improved Yield Potential and Drought Adaptation in Maize. Journal of Agricultural and Food Chemistry 59:467-74. http://dx.doi.org/10.1021/jf103395z

nirs_medium

[9] Cabrera-Bosquet L, Molero G, Stellacci AM, Bort J, Nogues S, Araus JL. 2011. NDVI as a Potential Tool for Predicting Biomass, Plant Nitrogen Content and Growth in Wheat Genotypes Subjected to Different Water and Nitrogen Conditions. Cereal Research Communications39:147-59. http://dx.doi.org/10.1556/crc.39.2011.1.15

[8] Aranjuelo I, Cabrera-Bosquet L, Morcuende R, Avice JC, Nogues S, et al. 2011. Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? Journal of Experimental Botany 62:3957-69 https://doi.org/10.1093/jxb/err095

2010

[7] Araus JL, Sanchez C, Cabrera-Bosquet L. 2010. Is heterosis in maize mediated through better water use? New Phytologist 187:392-406. http://dx.doi.org/10.1111/j.1469-8137.2010.03276.x

vigor_medium

2009

[6] Cabrera-Bosquet L, Sanchez C, Araus JL. 2009. How yield relates to ash content, Δ13C and Δ18O in maize grown under different water regimes. Annals of Botany 104:1207-16. http://dx.doi.org/10.1093/aob/mcp229.

[5] Cabrera-Bosquet L, Sanchez C, Araus JL. 2009. Oxygen isotope enrichment (Δ18O) reflects yield potential and drought resistance in maize. Plant Cell and Environment 32:1487-99. http://dx.doi.org/10.1111/j.1365-3040.2009.02013.x

aob_small

[4] Cabrera-Bosquet L, Molero G, Nogues S, Araus JL. 2009. Water and nitrogen conditions affect the relationships of Δ13C and Δ18O to gas exchange and growth in durum wheat. Journal of Experimental Botany60:1633-44. http://dx.doi.org/10.1093/jxb/erp028

aab_small

[3] Cabrera-Bosquet L, Albrizio R, Luis Araus J, Nogues S. 2009. Photosynthetic capacity of field-grown durum wheat under different N availabilities: A comparative study from leaf to canopy. Environmental and Experimental Botany 67:145-52. http://dx.doi.org/10.1016/j.envexpbot.2009.06.004

[2] Aranjuelo I, Cabrera-Bosquet L, Mottaleb SA, Araus JL, Nogues S. 2009. 13C/12C isotope labeling to study carbon partitioning and dark respiration in cereals subjected to water stress. Rapid Communiations in Mass Spectrometry 23:2819-28. http://onlinelibrary.wiley.com/doi/10.1002/rcm.4193/abstract

2007

[1] Cabrera-Bosquet L, Molero G, Bort J, Nogues S, Araus JL. 2007. The combined effect of constant water deficit and nitrogen supply on WUE, NUE and Δ13C in durum wheat potted plants. Annals of Applied Biology  151:277-89. http://dx.doi.org/10.1111/j.1744-7348.2007.00195.x

Modification date: 17 July 2023 | Publication date: 26 August 2020 | By: Aurélien Ausset